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(a) Citation Network (b) Molecular Structure (c) Traffic Network Topology

Figure: Three examples of real-world graphs
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Dynamic Graphs

@ Dynamic graph abstracts many real-world systems

User 2 User 2

User 2

User 1

User 3

Figure: An example of social network evolving

@ Examples: Social platforms (e.g., user-user interactions) and online shopping
websites (e.g., user-item interactions)
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Dynamic Graphs: Taxonomy

@ Static graphs: No temporal information involved, i.e., fixed structural and
attributive information

o Edge weighted graphs: Temporal information on edges and/or nodes (e.g.,
attributes) of a static graph, e.g., dynamic traffic volumes in metro networks
with a fixed station topology
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Dynamic Graphs: Taxonomy

o Discrete-time dynamic graphs (DTDGs): A sequence of regularly-sampled
(static) graph snapshots

PRV

3

o Continuous-time dynamlc graphs (CTDGs): A graph consisting of
temporal events that are irregularly-sampled, such as the insertion or deletion
of an edge at a specific time
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Message-Passing Graph Neural Networks

@ MP-GNN is a popular simplified paradigm in modeling graph-structured data

MP-GNN to learn the node embedding of the node A: h,(f)

I ’”(*Zg

EITSLY
h(l) A
T upre.)
m AGG(...) @ Q ‘“ Q
U MSG(.) (O)G O o OQQ O
One neural layer h(O)

Figure: The computational flow of MP-GNN to calculate a node embedding

Jin et al. NeurlPS 2022



Message-Passing Graph Neural Networks

@ Initialize node representations with native attributes: hgo) — X,,Yvey

@ Update each node representation over the graph structure:
Message: mi) « MSG(RUY Rl Y(u,v) € €
Aggregation: al) « AGG({m!) | u e N,}), Vv eV

Update: A" « UPT(RU"Y o) vv eV
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Graph Representation Learning

o “Node2Vec”: We aim to learn low-dimensional node embedding vectors

R
G=(AX) 5 L
-
N —> =

NODE 0/// \\ = VECTOR

[ J go : RV*XD x RNXN _y RNxD’ =

X € RNXD RND

A e RN*N <D

@ The parameterized transformation gy can be a MP-GNN
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Graph Representation Learning

How can conventional graph neural networks be extended to model
continuous-time dynamic graphs?
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Related Work

Jin et al. NeurlPS 2022 March 2, 2023



Dynamic Graph Neural Networks: Taxo

o Node-based: Extending the concept of message passing to aggregate the
temporal neighborhood information

<+ — Message function
I:I Aggregation function 9 User 1

User 2

User 4

User 1
I User 2
- 0—|j
User 3 <— Update function
(a) Dynamic Graph (b) Temporal Message Passing

@ Subgraph-based: Generalizing the path-based static network embedding
methods to model dynamic graphs
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User 4 User 3 User 2 User 1

L » User 4 User 3 User 1
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User 3
(a) Dynamic Graph (b) Temporal Random Walks
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Category 1. Temporal Message Passing

@ Initialize time-aware node representations with raw attributes:
Rl « X, Vo eV, teRt

v,t
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Category 1. Temporal Message Passing

@ Initialize time-aware node representations with raw attributes:
h) « X, Y0 eV, t € RY

@ Update time-aware node representations w.r.t. the dynamic graph structural
and attributive information:

Message: m'" , « MSG(R!'[V ATV 2(t=t0)) V(u, v,t) € £;t,t), € RF

vu,t w,ty

Aggregation: af)lt — AGG({muut | u € Nyyi}), Yo eVt e RT

Update: b, « UPT(h{; ", a!}),vv e V,t e R*

)
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Category 1. Temporal Message Passing

@ Initialize time-aware node representations with raw attributes:
h) « X, Y0 eV, t € RY
@ Update time-aware node representations w.r.t. the dynamic graph structural
and attributive information:
Message: m'" , « MSG(R!'[V ATV 2(t=t0)) V(u, v,t) € £;t,t), € RF

vu,t w,ty

Aggregation: af)lt — AGG({muut | u € Nyyi}), Yo eVt e RT

Update: b, « UPT(h{; ", a!}),vv e V,t e R*

)

o “Time2Vec”: Taking important time gap information into account

(t) w;t + qbi, if i = O7
zZ. =
¢ sinwit + ¢, if1<i<D.
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Category 1. Temporal Message Passing

@ Initialize time-aware node representations with raw attributes:
h) « X, Y0 eV, t € RY

@ Update time-aware node representations w.r.t. the dynamic graph structural
and attributive information:

Message: m(mzt « MSG(RU Y hgtkl),z(t‘tk)),V(u,v,t) €&t ty, €RT

Aggregation: af)lt — AGG({muut | u € Nyyi}), Yo eVt e RT

Update: b, « UPT(h{; ", a!}),vv e V,t e R*

)

o “Time2Vec”: Taking important time gap information into account

(t) w;t + qbi, if i = O7
zZ. =
¢ sinwit + ¢, if1<i<D.

@ Both TGAT and TGN build on this paradigm with some upgrades
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Category 2. Temporal Random Walk

e Temporal walk: A walk from vy to v in a continuous-time dynamic graph is
a sequence of vertices [v1, v, -+ , U], where (v;,viq1, T (vi,vi11)) € € for
1<i<k,and T(vi,vi41) < T (0ig1,0i42) for 1 <i < (k—1)
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Category 2. Temporal Random Walk

e Temporal walk: A walk from vy to v in a continuous-time dynamic graph is
a sequence of vertices [v1, v, -+ , U], where (v;,viq1, T (vi,vi11)) € € for
1<i<k,and T(vi,vi41) < T (0ig1,0i42) for 1 <i < (k—1)

o Initialization: Given a CTDG, we sample an initial edge e := (v, u) with the
time t,. = T (e) := T (v,u) from a distribution F,
exp[T (€) — tmin)

Pre) = s "ol @) -t
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Category 2. Temporal Random Walk

e Temporal walk: A walk from vy to v in a continuous-time dynamic graph is
a sequence of vertices [v1, v, -+ , U], where (v;,viq1, T (vi,vi11)) € € for
1<i<k,and T(vi,vi41) < T (0ig1,0i42) for 1 <i < (k—1)

o Initialization: Given a CTDG, we sample an initial edge e := (v, u) with the
time t,. = T (e) := T (v,u) from a distribution F,
exp[T (€) — tmin)
Ze/eg exp[T(E’) - tmin]

@ Walk construction: We sample the rest of nodes in a walk from another
distribution F,

Pr(e) =

explr(w) — 7(w)]
S e, . explr(w’) — r(u)]

Pr(w) =
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Category 2. Temporal Random Walk

e Temporal walk: A walk from vy to v in a continuous-time dynamic graph is
a sequence of vertices [v1, v, -+ , U], where (v;,viq1, T (vi,vi11)) € € for
1<i<k,and T(vi,vi41) < T (0ig1,0i42) for 1 <i < (k—1)

o Initialization: Given a CTDG, we sample an initial edge e := (v, u) with the
time t,. = T (e) := T (v,u) from a distribution F,
exp[T (€) — tmin)
Ze/eg exp[T(E’) - tmin]

@ Walk construction: We sample the rest of nodes in a walk from another
distribution F,

Pr(e) =

explr(w) — 7(w)]
S e, . explr(w’) — r(u)]

Pr(w) =

@ Given as set of walks S, learn the function f:V — RVXD' 35 follows:

m}:}x log Pr(Wr = {vi—w, -+, Vitw} \ vi | f(vi))
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Category 2. Temporal Random Walk

e Temporal walk: A walk from vy to v in a continuous-time dynamic graph is
a sequence of vertices [v1, v, -+ , U], where (v;,viq1, T (vi,vi11)) € € for
1<i<k,and T(vi,vi41) < T (0ig1,0i42) for 1 <i < (k—1)

o Initialization: Given a CTDG, we sample an initial edge e := (v, u) with the
time t,. = T (e) := T (v,u) from a distribution F,
exp[T (€) — tmin)
Ze/eg exp[T(E’) - tmin]

@ Walk construction: We sample the rest of nodes in a walk from another
distribution F,

Pr(e) =

explr(w) — 7(w)]
S e, . explr(w’) — r(u)]

Pr(w) =

@ Given as set of walks S, learn the function f:V — RVXD' 35 follows:
m}:}x log Pr(Wr = {vi—w, = s Vigw} \ vi | f(v3))

@ Both CTDNE and CAW are based on the concept of temporal walks
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Our Proposal
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o Challenge 1. The entangled spatial and temporal dependencies in real-world
CTDGs require a specific paradigm to model

e This prevents the direct use of off-the-shelf GNNs
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o Challenge 1. The entangled spatial and temporal dependencies in real-world
CTDGs require a specific paradigm to model

e This prevents the direct use of off-the-shelf GNNs

o Most of existing works simplify CTDGs to a series of static graph snapshots
with uniform time intervals, i.e., DTDGs

e Some works propose to directly learn on CTDGs, e.g., JODIE and DyRep, but
the inductiveness of the patterns they captured is not guaranteed
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o Challenge 1. The entangled spatial and temporal dependencies in real-world
CTDGs require a specific paradigm to model

e This prevents the direct use of off-the-shelf GNNs

o Most of existing works simplify CTDGs to a series of static graph snapshots
with uniform time intervals, i.e., DTDGs

e Some works propose to directly learn on CTDGs, e.g., JODIE and DyRep, but
the inductiveness of the patterns they captured is not guaranteed

o Although some recent advantages attempt to alleviate this issue, e.g., TGAT
and CAW, they usually fail to explore diverse and expressive patterns from
real-world CTDGs

Jin et al. NeurlPS 2022 March 2, 2023



@ Challenge 2. Temporal events in CTDGs occur irregularly, resulting in a
significant challenge in modeling temporal dependencies

e E.g., nodes a and c interact with b at different time (i.e., Aty # Ats)

() L @

At, @
——
t2 G t3 tz tll
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@ Challenge 2. Temporal events in CTDGs occur irregularly, resulting in a
significant challenge in modeling temporal dependencies

e E.g., nodes a and c interact with b at different time (i.e., Aty # Ats)

() L @

At, @
—©O©
: t; t

t 2 bt

e Previous works typically bypasses this challenge with the time encoding to
enable the use of message passing or sequence models

@ The important time dependencies are modeled implicitly (as a part of
attributive information)

o We empirically find that this hurts the performance

Jin et al. NeurlPS 2022 March 2, 2023



Dynamic Graph Motif

@ Dynamic graph learning is about modeling dynamic graph motifs, which
reflect essential dynamic laws

e E.g., two people are likely to know each other if they have a common friend

e Temporal walks:

A
ty E> ty t3 @ . @

: v
! |
' i
i R |
t;
: & o |
1
' 1
| @ t2 o t2 t3 oty
1
E Dynamic law: Two nodes that interact with a common !
' temporal neighbor tend to be connected in the future )
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Dynamic Graph Motif

@ Dynamic graph learning is about modeling dynamic graph motifs, which
reflect essential dynamic laws

e E.g., two people are likely to know each other if they have a common friend

e Temporal walks:

A
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Dynamic law: Two nodes that interact with a common
temporal neighbor tend to be connected in the future

o In this case, & — % — & within the time range 0 < ¢ < t3 is a dynamic graph
motif that describe the law that & is likely to interact with & at a certain time
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Dynamic Graph Motif

@ Dynamic graph learning is about modeling dynamic graph motifs, which
reflect essential dynamic laws

e E.g., two people are likely to know each other if they have a common friend

e Temporal walks:

A
ty E> ty t3 @ . @

comal
i tz o @ ta o I i

t3 t2 4
Dynamic law: Two nodes that interact with a common
temporal neighbor tend to be connected in the future

o In this case, & — % — & within the time range 0 < ¢ < t3 is a dynamic graph
motif that describe the law that & is likely to interact with & at a certain time

e In this work, we mainly focus on answering two research questions: (1) How to
extract diverse and expressive motifs and (2) how to encode these motifs to
learn effective node representations
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Preliminaries

@ We define a continuous-time dynamic graph as a stream of temporal
interactions

e For simplicity, we assume these temporal interactions are without node and
edge attributes in the following slides

e Our method can be easily extended to learn on attributed CTDGs

Continuous-Time Dynamic Graph

A CTDG is defined as G = {(e;,t;)}}¥.;, where each interaction has two nodes at
a specific time, e.g., (e;,t;) == ({us, vi},t;), t; € RT
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Preliminaries

@ As dynamic graph motifs reflect certain dynamic laws in a CTDG, it is
desirable to characterize a temporal node with its surrounding motifs

Dynamic Graph Motif

Given a CTDG G, we define a motif as a subset of temporal nodes with their
interactions within a defined time range, i.e.,, 0 <t < gq.

Jin et al. NeurlPS 2022 March 2, 2023



Preliminaries

@ Temporal walks rooted at a node can be regarded as its surrounding dynamic
graph motifs after walk anonymization

Temporal Walk

Given a dynamic graph G, we denote the interactions that are directly associated
with a node u before a cut time ¢t as G, = {(e,t') | t' <t, uce, (e,t) € G} A
(time-reversed) temporal walk rooted at node u at time ¢ is defined as W, which
is a sequence of temporal nodes, i.e., node w; at time t; with wg := u and tg :=t:

W = {(w;, t;) |0<i <1, to>--->t;, {wi,wi—1},t) € Gy 1ty Vi > 1}

@ We use [ to denote walk length. We also use W[i][0] and W[i][1] (i.e., w;
and t; in (w;,t;)) to denote the specific node and time in the i-th step.

NeurlPS 2022



Preliminaries

@ Temporal walks rooted at a node can be regarded as the surrounding
dynamic graph motifs of this node after the walk anonymization

: :, ;
i @—7> =) . Two different temporal walks Dynamic graph mot'f
O @ Anonymized walks

Ot O O ©)
S—->0-0-Q @& OO ®
@—)“ c @ . @_>._>H} o<t<7

Figure: Two example temporal walks form two different triadic closures but represent the
same motif within the time range 0 <t < 7.

A dynamic graph motif has one or more instantiations, which are temporal walks
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Preliminaries

@ Temporal walks rooted at a node can be regarded as its surrounding dynamic
graph motifs after walk anonymization

(Simplified) Walk Anonymization

Given a temporal node w and a walk W, the anonymization operator A(:) is
defined as follows:

A(w; W) = [{vo, - -+ , v+ | v; € W}, where i is the smallest index s.t. v;x = w.

A valid temporal walk can be generalized to a specific dynamic graph motifs by
removing temporal node identities

Jin et al. NeurlPS 2022



Methodology: Walk Sampling

o Motif extraction: Firstly, we consider not only temporal but also spatial
constrains when sampling walks

A dynamic graph with timestamped edges and a queried interaction \ N7 AN 6~ 5.~ 6 5 2
at a specific time :@ ‘ @ >
]
! 1
1
(R My _____ ; My,
2]
(7 6 5 N 6 5 4
SLETETES 05050
H
i ~~ '
|
(O rootnode —> Temporal-biased walk —> Spati biased walk | | [v_ __ _ _ AMy) ! AMy)
> Spatiotemporal-biased walk with exploration & exploitation trade-off S ized node
I\ (a) Dynamic Graph Motif Extraction _J (b) Walk Anonymization

Temporal-biased Walk Sampling

Most-recent neighbors should be allocated a larger sampling probability since they are
typically more informative w.r.t. a node at time ¢:

exp(a(ta —t))
> veo, , exp(alte — 1)

Pri(a) =
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Methodology: Walk Sampling

o Motif extraction: Firstly, we consider not only temporal but also spatial
constrains when sampling walks

( A dynamic graph with timestamped edges and a queried interaction N7 AN 6~ 5.~ 6 5 2
at a specific time :@ l (:) 9
1
' M, /I M,
(6N 7 N 6o 5 6 5 4
=000 O0>8->0-0
I
1 " H
1
O Root node —> Temporal-biased walk —> i biased walk | A _(1142) ______ ! A(M")
—> Spatiotemporal-biased walk with exploration & exploitation trade-off 0 @ node
\_ (a) Dynamic Graph Motif Extraction ) (b) Walk Anonymization

Spatial-biased Walk Sampling

Neighbors with higher connectivity (e.g., node degree dq = |G, +/|) need to be
emphasized to allow exploring more diverse and potentially expressive motifs:

_ exp(—B/da)
o) = S o (=B dur)
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Methodology: Walk Sampling

@ Motif extraction: We also consider tree traversal properties to avoid
sampling too much homogeneous motifs

A dynamic graph with timestamped edges and a queried interaction N N7 AN 6~ 5.~ 6 5 2

at a specific time }@ >O—>0—@ '@ >©—>@—W
H .. : ..
1
(R My _____ ; My,

2]
(7 6\ 5 6 5 4
SLETETES 050050
i
1 N \
1
(O rootnode —> Temporal-biased walk —> Spati biased walk | | [v_ __ _ _ AMy) ! AMy)
—> spatiotemporal-biased walk with exploration & exploitation trade-off S ized node
\_ (a) Dynamic Graph Motif Extraction ) (b) Walk Anonymization

Exploitation & Exploration Trade-Off

If a temporal neighbor has been sampled s, times, its sampling probability in the next
turn is inversely proportional to s,:

exp(—vSa)
P =
Te(a) Za/Ggu,t exp(—Sqr)
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Methodology: Walk A mization

o Motif generation: Walk anonymization replaces node identities with
position encodings (aka relative identities), which injects structural
information while maintaining the inductiveness of our method

( A dynamic graph with timestamped edges and a queried interaction (//— S 7 N6 N S 6 5 4 N
ata specfc tme =000 O->E>E-O
L A_qli ______ II M,
b1}
(N7 A 65 e 6 5 4
=000 O0->8>0-0
O Root node —> Temporal-biased walk —> Spati biased walk Voo _A_(I_VIE) ______ ! AMy,)
\_—> spati biased walk with ion & ontradeot )| node
(a) Dynamic Graph Motif Extraction \_ (b) Walk Anonymization )

Unitary Anonymization

For a temporal node w in at least one walk rooted at node u, its unitary anonmization
w.r.t. u considers the name space defined over M, the set of walks rooted at u:

A(w; M)[i]) = {W | w = W[i][0], W € M,}|,where i € {0,--- ,1}

Jin et al.

NeurlPS 2022
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Methodology: Walk Anonymization

o Motif generation: Walk anonymization replaces node identities with
position encodings (aka relative identities), which injects structural
information while maintaining the inductiveness of our method

A dynamic graph with timestamped edges and a queried interaction (/— ST N 6N 5 s N

at a specific time :O : @_ﬁ)
Ve ____ p_dli ______ /I M,

b1}
(N7 N 60 5 e 6 5 4
©—0>0-0 O>0>0-0
1
O Root node —> Temporal-biased walk —> Spati biased walk I\_ . _A_(I_VIE) ______ ! AMy,)
\_—> spati biased walk with ion & exploitation trade-off S ized node
(a) Dynamic Graph Motif Extraction \_ (b) Walk Anonymization )

Binary Anonymization

Establishing the connections between W € M, U M, (i.e., unifying the name spaces
between A(w; M,) and A(w; M,)) may be beneficial for edge-level tasks:

A(w; My, My,) = A(w; M) || A(w; My)

Jin et al. NeurlPS 2022 March 2, 2023



Methodology: Walk A mization

o Motif generation: Walk anonymization replaces node identities with
position encodings (aka relative identities), which injects structural
information while maintaining the inductiveness of our method

A dynamic graph with timestamped edges and a queried interaction (1' {7 N 6~ 5~ 6 5 4 N

at a specific time :@ > : ®_>
! !
. My ; M,

b1}
(7 6 5 6 5 4
©—0>0-0 O>0>0-0
| | o
]
O Root node —> Temporal-biased walk —> i biased walk I\ ______ A _(’_WE) ______ ! AM,)
—> Spati I-biased walk with fon & itation trade-off @ ized node izati
(a) Dynamic Graph Motif Extraction k (b) Walk Anonymization j

o We transform a temporal walk W = {(w;, t;) | (w;,t;) € W for i =0,--- 1}
to a dynamic graph motif W = {(A(w;), t;) | (wi, t;) € W for i =0,--- 1}

o A(w;) can be either unitary or binary anonymization

Jin et al. NeurlPS 2022 March 2, 2023



Methodology: Neural Motif Encoding

@ To encode a motif with irregularly-sampled temporal nodes, we explicitly
integrate over multiple interaction time intervals to learn the latent
spatiotemporal dynamics with those discrete observations

(" Encode an anonymized temporal walk W: R Algorithm 2 Neural Temporal Walk Encoding
Aw) 255 4(9) 22> a(e) 225 Aw)

Require: An anonymous temporal walk w o=
{(A(wi), ti) | (wi,t:) € Wfori=0,1,---,1}

: Reverse the order of elements in W

st = to, h_1 =0

:foriin0,1,2,--- ,ldo

hi = ODESO]VC(}LI'_17 fg, ti_l, ti)

A’ (w) = MLPy (A(w;))

hi = gg(hi, A (wi))

: end for

: return The walk embedding h;

Neural Temporal Walk Encoding

ﬂ Aty f
= I (9t Eaw);

| T '

Feature Extraction
4

4

A
AW) A(g) A(.e)/:i)\‘ /

Irregular trajectory of latent state evolution

-t

PND U AW~

@ Specifically, our method consists of two interleaving steps: Continuous
evolution and instantaneous activation

Jin et al. NeurlPS 2022 March 2, 2023



Methodology: Neural Motif Encoding

Encode an anonymized temporal walk W: Algorithm 2 Neural Temporal Walk Encoding
AW) > A9) 22> A@e) 25 4w)

: Require: An anonymous temporal walk W o=
Neural Temporal Walk Encoding {(A(wi), ti) | (wiyt;) € Wfori =0,1,---,1}
Ats, f 7

1
Feature Extra ction
Y

A A@ Aﬂgi)\‘/

Irregular trajectory of latent state

: Reverse the order of elements in W
sty =tg,h_1=0

: foriin0,1,2,---,ldo

h; = ODESolve(hi_1, fo, ti_1,t:)
A (w;) = MLPw(A(wi))

hi = ga(hi, A (ws))

: end for

: return The walk embedding h;

- H

PN LR WY

Continuous Evolution

|

Given a series of temporal nodes at different time, i.e., (A(w;),t;) € W and ensuring
ti—1 < t; by reversing the order of elements in W, the latent spatiotemporal dynamics
among those nodes are modeled as follows:

hi=hioi+ | f(he,0) dt,
ti—1

where h;_1 denotes the latent states after encoding (A(w;—1),ti—1) € W. We define the
ODE function f(h¢,0) as an autoregressive gated recurrent unit parameterized by 6.

Jin et al. NeurlPS 2022 March 2, 2023



Methodology: Neural Motif Encoding

R a"°“V’""ed temporal walk W’ Algorithm 2 Neural Temporal Walk Encoding
At, At.
Al %A —> > =
@ @ 4@ A : Require: An anonymous temporal walk W =
Neural Temporal Walk Encoding {(A(Uh), ti) | (’wi,ti) e Wfori=0,1,---, l}

: Aty f
) M"f
I t [

4
1

: Reverse the order of elements in W
t_1=tg,h_1=0
: foriin0,1,2,--- ,ldo
h; = ODESolve(hi_1, fo, ti_1,t:)
A (wi) = MLPy, (A(wy))
hi = go(hi, A (wi))
end for
: return The walk embedding h;

t
Feature Extraction

Aw) 4@ ﬂg})\‘ /

Irregular trajectory of /atent state evolution

——l

i A O e d S e

Instantaneous Activation

The latent state evolution in continuous evolution processes conditions on a series of
discrete observations. Thus, we define a function to activate latent state trajectories
with instantaneous inputs:

hi = g(hi, A (ws), 9),
where g(-, ¢) can be a standard RNN cell parameterized by ¢, and
A’ (w;) = MLP(A(w;), 1) denotes the linear mapping of a discrete observation A(w;) in
an anonymous walk w.
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Methodology: CL-based Optimization

@ Here, we introduce a harder contrastive pretext task than other works. Our
task aims to maximize the mutual information between interacting temporal
nodes while pushing other irrelevant nodes away

Learning Objective

P ]E[l exp(sim(hu, hv)) }
= —E|lo — —
8 exp(sim(hu, ko)) + 3 cg sy €2D(SiM (R, B )

sim(-) is a similarity function defined as sim(hu, hv) = o (MLP(hu, ha,€)), where o(-)
and & are sigmoid activation and trainable parameters.
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Technical Challenge 1: Batching for Scalability

o We employ a “substitute variable” trick to solve a batch of neural ODEs
instead of solving them one by one (see Appendix B.3 for details)

A batch of length-1 anonymized temporal walks

"—’.‘»O .

QQ@?,@’E(’AU@A@ w ‘
. : ‘ | ODESolve(Hy, £, 1) |
\0DESolve(ho, fo, 00)}| |00 olve(Ho fo. 1)

@ Unifying the integral time among all ODEs to the same range, resulting in a
lower time complexity O(1) instead of O(B) in the above example
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Technical Challenge 2: Time Interval Normalization

@ Another challenge is how to make the solving of continuous evolution
processes tractable when facing very large time intervals. (See Appendix B.3)

Statistics: ©=3.70, 0=0.92

1e-5 Statistics: u=22660.12, o=54085.24
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(a) Distribution of raw time intervals in (b) Distribution of logarithmically scaled
seconds time intervals with the base 10

@ Retaining the relative differences between small and large time intervals is the
key to preserving critical temporal patterns in dynamic graph modeling
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Experimental Results
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Main Results: Temporal Link Prediction

Table 2: Transductive and inductive link prediction performances w.r.t. AUC. We use bold font and
underline to highlight the best and second best performances. NeurTWsf is a vairant of our method
with the binary anonymization.

Task Method CollegeMsg Enron Taobao MOOC
JODIE [15] 0.5846 + 0.038 0.8714 £ 0.011 0.8477 £ 0.015 0.6815 + 0.014
g DyRep [34] 0.5297 £ 0.042 0.8632 £+ 0.013 0.8462 £+ 0.012 0.6195 £ 0.018
g TGAT [38] 0.7528 £ 0.004 0.6592 + 0.012 0.5400 £ 0.005 0.6750 £ 0.035
2 TGN [27] 0.8990 + 0.003 0.8944 + 0.015 0.8484 + 0.029 0.7703 + 0.032
g CAWs [36] 0.9002 + 0.002 0.9520 + 0.002 0.8719 £ 0.001 0.6948 + 0.053
= NeurTWs 0.9526 + 0.002 0.9564 + 0.005 0.9100 + 0.014 0.7756 + 0.031
NeurTWst 0.9750 + 0.004 0.9704 + 0.012 0.8911 + 0.014 0.7470 + 0.028
JODIE [15] 0.4589 + 0.028 0.8182 + 0.022 0.7626 + 0.002 0.6304 £ 0.006
- DyRep [34] 0.4486 + 0.021 0.7241 £ 0.025 0.7641 £+ 0.012 0.5504 £+ 0.010
o | TGAT [38] 0.7240 + 0.008 0.6131 + 0.049 0.5537 + 0.018 0.6410 £ 0.024
2 | TGN [27] 0.8699 + 0.007 0.7068 + 0.116 0.8706 =+ 0.008 0.6968 + 0.008
2 | 2 | CAWs[36] 0.8911 + 0.015 0.9612 + 0.002 0.8744 + 0.004 0.7479 £ 0.023
g NeurTWs 0.9575 £+ 0.011 0.9525 + 0.002 0.9316 + 0.018 0.7822 + 0.004
"!:3; NeurTWsf 0.9699 + 0.010 0.9566 + 0.007 0.9037 £ 0.013 0.7772 £ 0.006
= JODIE [15] 0.5135 £ 0.048 0.7537 £ 0.025 0.7791 £ 0.004 0.8243 £ 0.007
DyRep [34] 0.5813 + 0.066 0.7184 + 0.061 0.7716 £ 0.017 0.5288 + 0.021
E TGAT [38] 0.7283 £ 0.029 0.6340 + 0.032 0.5479 + 0.025 0.6365 £+ 0.014
£ | TGN [27] 0.7745 £ 0.102 0.9217 + 0.026 0.8701 £ 0.011 0.6448 + 0.053
:“Z’ CAWs [36] 0.8974 £ 0.009 0.9777 £ 0.001 0.8762 + 0.004 0.7558 + 0.036
NeurTWs 0.9649 + 0.008 0.9906 + 0.007 0.9242 + 0.005 0.8329 + 0.010
NeurTWsf 0.9768 + 0.008 0.9858 + 0.015 0.9140 £+ 0.013 0.8302 + 0.007
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Main Results: T ral Node Classification

Table 3: Dynamic node classification performance
w.r.t. AUC. We use bold font and underline to
highlight the best and second best performances.
The baseline results are taken from [27].

Method Wikipedia Reddit
CTDNE [23] | 0.7589 + 0.005 0.5943 + 0.006
JODIE [15] 0.8484 £ 0.012 0.6183 £ 0.027
DyRep [34] 0.8459 + 0.022  0.6291 + 0.024
TGAT [38] 0.8369 + 0.007  0.6556 £ 0.007
TGN [27] 0.8781 + 0.003  0.6706 + 0.009
NeurTWs 0.8851 + 0.003  0.6652 + 0.022

@ Our method surpasses the strongest baseline by up to 8% in transductive or
inductive temporal link prediction tasks

@ In addition, our approach achieves the best or on-par performances on
temporal node classification tasks
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Ablation Study: Main Results

Table 4: Ablation study with the proposed NeurTWs method. The performance in predicting all

inductive interactions is reported.

. CollegeMsg Taobao

No. Configuration AUC AP AUC AP

0 Full model (NeurTWs) 0.958 +0.01 0.966 + 0.01 0.938 +0.02 0.933 + 0.02
1 w/o T-biased probability 0918 £0.02 0928 £0.02 0.932+£0.03 0.927 £0.01
2 w/o S-biased probability 0949 £0.02 0958 +0.02 0915+0.01 0.915+0.01
3 w/o E&E-biased probability  0.957 £0.01  0.965+0.01 0926 +£0.01 0.927 +0.01
4 w/o continuous evolution 0.868 +=0.02 0.898+0.01 0.860+0.05 0.901 £ 0.02
5 w/o contrasitve learning 0.954 +0.01 0.962+0.01 0.935+0.01 0.932+0.01

@ Spatiotemporal-biased walk sampling is highly preferred, and incorporating
traversal properties can provide significant benefits on certain datasets

@ The proposed continuous evolution process is essential for embedding
anonymized walks that include irregularly-sampled temporal nodes

@ Our contrastive learning objective provides general improvements, although

they may not be very substantial

Jin et al. NeurlPS 2022
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Ablation Study: Modeling Temporal Dependencies

Table 10: Study on different strategies to model temporal dependencies in temporal walk encoding
(Section 4.3). The performance in predicting all inductive interactions is reported.

Configuration CollegeMsg Taobao
AUC AP AUC AP
Standard RNN 0.868 =0.02 0.898 £+ 0.01 0.860 £0.04 0.901 £+ 0.02

RNN with exponential decay ~ 0.915 £0.03  0.925+0.03  0.923 £0.01  0.920 £ 0.01
RNN with time encoding 0910+0.02 0903 +0.01 0.889+0.01 0.906 £ 0.02
Continuous evolution 0.958 +0.01  0.966 = 0.01  0.938 +0.02  0.933 & 0.02

@ Standard RNNs perform poorly because they fail to consider the crucial time
interval information

@ Is using time encoding techniques the only solution for modeling temporal
dependencies? The answer is no

@ Our approach produces dominant results by significantly outperforming the
best available techniques, i.e., time encoding and exponential time decay
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Parametric Sensitivity
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Figure 5: Study on important settings of NeurTWs. The performance in predicting all inductive
interactions is reported.

@ For each dataset, there are optimal balances between the intensities of three
sampling biases

@ In most cases, sampling 16 or 32 walks with a length of 2 or 3 is sufficient to
characterize a temporal node

@ Increasing the number of negative samples can be beneficial, but it comes at
the cost of increased model complexity

Jin et al. NeurlPS 2022



Limitations

o Calculating spatial-biased probabilities can be computationally intensive,

though limiting the number of spanned temporal neighbors can help alleviate
the burden on computation

15.04 —* Temporal-biased sampling
—&— Spatiotemporal-biased sampling
Spatiotemporal-biased sampling with E&E trade-off

10.0
75
5.0

2.5

A
~ 125

Time (s

1x102 2% 107 3x10? 4x107 5x 102
Spanned Temporal Neighborhood

(a) Average walk sampling runtime in a batch w.r.t.
the number of spanned temporal neighborhood.

@ A more sophisticated time interval normalization strategy is required.
Although we propose a simple solution based on logarithmic transformations,

there is no theoretical guarantee of stability when solving the continuous
evolution process with this normalization trick

Jin et al.
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Summary
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@ We propose novel spatiotemporal-biased random walks to extract diverse and
expressive patterns from CTDGs by considering not only time constraints but
also topological and tree traversal properties

@ We introduce a new perspective to encode dynamic graph motifs composed
of irregularly-sampled temporal nodes, explicitly and better modeling the
underlying spatiotemporal dynamics

@ We integrate contrastive learning into dynamic graph modeling to enrich
supervision signals, which lifts the learning ability of our model
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