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Graphs

(a) Citation Network (b) Molecular Structure (c) Traffic Network Topology

Figure: Three examples of real-world graphs
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Dynamic Graphs

Dynamic graph abstracts many real-world systems

User 1

User 2

𝒕𝟏

User 1

User 2

𝒕𝟏

User 3

𝒕𝟐
𝒕𝟐

User 1

User 2

𝒕𝟏

User 3

𝒕𝟐
𝒕𝟐 𝒕𝟒

User 4

Figure: An example of social network evolving

Examples: Social platforms (e.g., user-user interactions) and online shopping
websites (e.g., user-item interactions)
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Dynamic Graphs: Taxonomy

Static graphs: No temporal information involved, i.e., fixed structural and
attributive information

Edge weighted graphs: Temporal information on edges and/or nodes (e.g.,
attributes) of a static graph, e.g., dynamic traffic volumes in metro networks
with a fixed station topology
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Dynamic Graphs: Taxonomy

Discrete-time dynamic graphs (DTDGs): A sequence of regularly-sampled
(static) graph snapshots

Continuous-time dynamic graphs (CTDGs): A graph consisting of
temporal events that are irregularly-sampled, such as the insertion or deletion
of an edge at a specific time
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Message-Passing Graph Neural Networks

MP-GNN is a popular simplified paradigm in modeling graph-structured data

Figure: The computational flow of MP-GNN to calculate a node embedding
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Message-Passing Graph Neural Networks

Initialize node representations with native attributes: h(0)
v ←Xv, ∀v ∈ V

Update each node representation over the graph structure:

Message: m
(l)
vu ← MSG(h(l−1)

v ,h(l−1)
u ), ∀(u, v) ∈ E

Aggregation: a
(l)
v ← AGG({m(l)

vu | u ∈ Nv}), ∀v ∈ V

Update: h(l)
v ← UPT(h(l−1)

v ,a
(l)
v ), ∀v ∈ V
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Graph Representation Learning

“Node2Vec”: We aim to learn low-dimensional node embedding vectors

The parameterized transformation gθ can be a MP-GNN
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Graph Representation Learning

Question
How can conventional graph neural networks be extended to model
continuous-time dynamic graphs?
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Dynamic Graph Neural Networks: Taxonomy

Node-based: Extending the concept of message passing to aggregate the
temporal neighborhood information
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User 4

User 3

User 1
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(a) Dynamic Graph (b) Temporal Message Passing

Update function

Message function
Aggregation function

Subgraph-based: Generalizing the path-based static network embedding
methods to model dynamic graphs

User 1

User 2

!!

User 3

!"
!" !#

User 4

(a) Dynamic Graph (b) Temporal RandomWalks
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Category 1. Temporal Message Passing

Initialize time-aware node representations with raw attributes:
h
(0)
v,t ←Xv,t, ∀v ∈ V , t ∈ R+

Update time-aware node representations w.r.t. the dynamic graph structural
and attributive information:
Message: m

(l)
vu,t ← MSG(h(l−1)

v,t ,h
(l−1)
u,tk

, z(t−tk)), ∀(u, v, t) ∈ E ; t, tk ∈ R+

Aggregation: a
(l)
v,t ← AGG({m(l)

vu,t | u ∈ Nv,t}), ∀v ∈ V , t ∈ R+

Update: h
(l)
v,t ← UPT(h(l−1)

v,t ,a
(l)
v,t), ∀v ∈ V , t ∈ R+

“Time2Vec”: Taking important time gap information into account

z
(t)
i =

{
ωit+ ϕi, if i = 0,

sinωit+ ϕi, if 1 ≤ i ≤ D′.

Both TGAT and TGN build on this paradigm with some upgrades
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Category 2. Temporal Random Walk

Temporal walk: A walk from v1 to vk in a continuous-time dynamic graph is
a sequence of vertices [v1, v2, · · · , vk], where

(
vi, vi+1, T (vi, vi+1)

)
∈ E for

1 ≤ i < k, and T (vi, vi+1) ≤ T (vi+1, vi+2) for 1 ≤ i < (k − 1)

Initialization: Given a CTDG, we sample an initial edge e := (v, u) with the
time t∗ = T (e) := T (v, u) from a distribution Fs

Pr(e) =
exp[T (e)− tmin]∑

e′∈E exp[T (e′)− tmin]

Walk construction: We sample the rest of nodes in a walk from another
distribution Fr

Pr(w) =
exp[τ(w)− τ(u)]∑

w′∈Nu,τu
exp[τ(w′)− τ(u)]

Given as set of walks S, learn the function f : V → RN×D′ as follows:
max
f

logPr(WT = {vi−w, · · · , vi+w} \ vi | f(vi))

Both CTDNE and CAW are based on the concept of temporal walks
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Motivations

Challenge 1. The entangled spatial and temporal dependencies in real-world
CTDGs require a specific paradigm to model

This prevents the direct use of off-the-shelf GNNs

Most of existing works simplify CTDGs to a series of static graph snapshots
with uniform time intervals, i.e., DTDGs

Some works propose to directly learn on CTDGs, e.g., JODIE and DyRep, but
the inductiveness of the patterns they captured is not guaranteed

Although some recent advantages attempt to alleviate this issue, e.g., TGAT
and CAW, they usually fail to explore diverse and expressive patterns from
real-world CTDGs
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Motivations

Challenge 2. Temporal events in CTDGs occur irregularly, resulting in a
significant challenge in modeling temporal dependencies

E.g., nodes a and c interact with b at different time (i.e., ∆t1 ̸= ∆t2)

Previous works typically bypasses this challenge with the time encoding to
enable the use of message passing or sequence models

The important time dependencies are modeled implicitly (as a part of
attributive information)
We empirically find that this hurts the performance
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Challenge 2. Temporal events in CTDGs occur irregularly, resulting in a
significant challenge in modeling temporal dependencies

E.g., nodes a and c interact with b at different time (i.e., ∆t1 ̸= ∆t2)

Previous works typically bypasses this challenge with the time encoding to
enable the use of message passing or sequence models

The important time dependencies are modeled implicitly (as a part of
attributive information)
We empirically find that this hurts the performance
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Dynamic Graph Motif

Dynamic graph learning is about modeling dynamic graph motifs, which
reflect essential dynamic laws

E.g., two people are likely to know each other if they have a common friend

In this case, ♠ → ⋆ → ♣ within the time range 0 ≤ t ≤ t3 is a dynamic graph
motif that describe the law that ♠ is likely to interact with ♣ at a certain time

In this work, we mainly focus on answering two research questions: (1) How to
extract diverse and expressive motifs and (2) how to encode these motifs to
learn effective node representations
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Preliminaries

We define a continuous-time dynamic graph as a stream of temporal
interactions

For simplicity, we assume these temporal interactions are without node and
edge attributes in the following slides

Our method can be easily extended to learn on attributed CTDGs

Continuous-Time Dynamic Graph
A CTDG is defined as G = {(ei, ti)}Ni=1, where each interaction has two nodes at
a specific time, e.g., (ei, ti) := ({ui, vi}, ti), ti ∈ R+

Jin et al. NeurIPS 2022 March 2, 2023 20 / 49
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Preliminaries

As dynamic graph motifs reflect certain dynamic laws in a CTDG, it is
desirable to characterize a temporal node with its surrounding motifs

Dynamic Graph Motif
Given a CTDG G, we define a motif as a subset of temporal nodes with their
interactions within a defined time range, i.e., 0 ≤ t ≤ q.
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Preliminaries

Temporal walks rooted at a node can be regarded as its surrounding dynamic
graph motifs after walk anonymization

Temporal Walk
Given a dynamic graph G, we denote the interactions that are directly associated
with a node u before a cut time t as Gu,t = {(e, t′) | t′ < t, u ∈ e , (e, t′) ∈ G}. A
(time-reversed) temporal walk rooted at node u at time t is defined as W , which
is a sequence of temporal nodes, i.e., node wi at time ti with w0 := u and t0 := t:

W = {(wi, ti) | 0 ≤ i ≤ l, t0 > · · · > tl, ({wi, wi−1}, ti) ∈ Gwi−1,ti−1
∀i ≥ 1}

We use l to denote walk length. We also use W [i][0] and W [i][1] (i.e., wi

and ti in (wi, ti)) to denote the specific node and time in the i-th step.
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Preliminaries

Temporal walks rooted at a node can be regarded as the surrounding
dynamic graph motifs of this node after the walk anonymization

Figure: Two example temporal walks form two different triadic closures but represent the
same motif within the time range 0 ≤ t ≤ 7.

Remark 1
A dynamic graph motif has one or more instantiations, which are temporal walks

Jin et al. NeurIPS 2022 March 2, 2023 23 / 49



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Preliminaries

Temporal walks rooted at a node can be regarded as its surrounding dynamic
graph motifs after walk anonymization

(Simplified) Walk Anonymization
Given a temporal node w and a walk W , the anonymization operator A(·) is
defined as follows:

A(w;W ) = |{v0, · · · , vi∗ | vi ∈W}|,where i∗ is the smallest index s.t. vi∗ = w.

Remark 2
A valid temporal walk can be generalized to a specific dynamic graph motifs by
removing temporal node identities
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Methodology: Walk Sampling

Motif extraction: Firstly, we consider not only temporal but also spatial
constrains when sampling walks

Temporal-biased Walk Sampling
Most-recent neighbors should be allocated a larger sampling probability since they are
typically more informative w.r.t. a node at time t:

Prt(a) =
exp(α(ta − t))∑

a′∈Gu,t
exp(α(ta′ − t))
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Methodology: Walk Sampling

Motif extraction: Firstly, we consider not only temporal but also spatial
constrains when sampling walks

Spatial-biased Walk Sampling
Neighbors with higher connectivity (e.g., node degree da = |Ga,t′ |) need to be
emphasized to allow exploring more diverse and potentially expressive motifs:

Prs(a) =
exp(−β/da)∑

a′∈Gu,t
exp(−β/da′)
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Methodology: Walk Sampling

Motif extraction: We also consider tree traversal properties to avoid
sampling too much homogeneous motifs

Exploitation & Exploration Trade-Off
If a temporal neighbor has been sampled sa times, its sampling probability in the next
turn is inversely proportional to sa:

Pre(a) =
exp(−γsa)∑

a′∈Gu,t
exp(−γsa′)
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.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Methodology: Walk Anonymization

Motif generation: Walk anonymization replaces node identities with
position encodings (aka relative identities), which injects structural
information while maintaining the inductiveness of our method

Unitary Anonymization
For a temporal node w in at least one walk rooted at node u, its unitary anonmization
w.r.t. u considers the name space defined over Mu, the set of walks rooted at u:

A(w;Mu)[i] = |{W | w =W [i][0], W ∈Mu}|,where i ∈ {0, · · · , l}
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Methodology: Walk Anonymization

Motif generation: Walk anonymization replaces node identities with
position encodings (aka relative identities), which injects structural
information while maintaining the inductiveness of our method

Binary Anonymization
Establishing the connections between W ∈Mu ∪Mv (i.e., unifying the name spaces
between A(w;Mu) and A(w;Mv)) may be beneficial for edge-level tasks:

A(w;Mu,Mv) = A(w;Mu) || A(w;Mv)
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Methodology: Walk Anonymization

Motif generation: Walk anonymization replaces node identities with
position encodings (aka relative identities), which injects structural
information while maintaining the inductiveness of our method

We transform a temporal walk W = {
(
wi, ti

)
| (wi, ti) ∈W for i = 0, · · · , l}

to a dynamic graph motif Ŵ = {
(
A(wi), ti

)
| (wi, ti) ∈W for i = 0, · · · , l}

A(wi) can be either unitary or binary anonymization
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Methodology: Neural Motif Encoding

To encode a motif with irregularly-sampled temporal nodes, we explicitly
integrate over multiple interaction time intervals to learn the latent
spatiotemporal dynamics with those discrete observations

Specifically, our method consists of two interleaving steps: Continuous
evolution and instantaneous activation
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Methodology: Neural Motif Encoding

Continuous Evolution
Given a series of temporal nodes at different time, i.e., (A(wi), ti) ∈ Ŵ and ensuring
ti−1 < ti by reversing the order of elements in Ŵ , the latent spatiotemporal dynamics
among those nodes are modeled as follows:

h
′
i = hi−1 +

∫ ti

ti−1

f(ht, θ) dt,

where hi−1 denotes the latent states after encoding (A(wi−1), ti−1) ∈ Ŵ . We define the
ODE function f(ht, θ) as an autoregressive gated recurrent unit parameterized by θ.
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Methodology: Neural Motif Encoding

Instantaneous Activation
The latent state evolution in continuous evolution processes conditions on a series of
discrete observations. Thus, we define a function to activate latent state trajectories
with instantaneous inputs:

hi = g(h
′
i, A

′
(wi), ϕ),

where g(·, ϕ) can be a standard RNN cell parameterized by ϕ, and
A

′
(wi) = MLP(A(wi), ψ) denotes the linear mapping of a discrete observation A(wi) in

an anonymous walk Ŵ .
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Methodology: CL-based Optimization

Here, we introduce a harder contrastive pretext task than other works. Our
task aims to maximize the mutual information between interacting temporal
nodes while pushing other irrelevant nodes away

Learning Objective

L = −E
[

log
exp

(
sim(hu, hv)

)
exp

(
sim(hu, hv)

)
+

∑
v′∈G,v′ ̸=v exp

(
sim(hu, hv′)

)]

sim(·) is a similarity function defined as sim(hu, hv) = σ
(
MLP(hu, ha, ξ)

)
, where σ(·)

and ξ are sigmoid activation and trainable parameters.
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Technical Challenge 1: Batching for Scalability

We employ a “substitute variable” trick to solve a batch of neural ODEs
instead of solving them one by one (see Appendix B.3 for details)

"#$%&'()(ℎ", -# , ∆/)

"#$%&'()(ℎ", -# , ∆/)

"#$%&'()(ℎ", -# , ∆/)

… …

"#$%&'()(1", 2-# , 1)

A batch of length-1 anonymized temporal walks

Unifying the integral time among all ODEs to the same range, resulting in a
lower time complexity O(1) instead of O(B) in the above example
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Technical Challenge 2: Time Interval Normalization

Another challenge is how to make the solving of continuous evolution
processes tractable when facing very large time intervals. (See Appendix B.3)

(a) Distribution of raw time intervals in
seconds

(b) Distribution of logarithmically scaled
time intervals with the base 10

Retaining the relative differences between small and large time intervals is the
key to preserving critical temporal patterns in dynamic graph modeling
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Experimental Results
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Main Results: Temporal Link Prediction
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Main Results: Temporal Node Classification

Our method surpasses the strongest baseline by up to 8% in transductive or
inductive temporal link prediction tasks

In addition, our approach achieves the best or on-par performances on
temporal node classification tasks
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Ablation Study: Main Results

Spatiotemporal-biased walk sampling is highly preferred, and incorporating
traversal properties can provide significant benefits on certain datasets

The proposed continuous evolution process is essential for embedding
anonymized walks that include irregularly-sampled temporal nodes

Our contrastive learning objective provides general improvements, although
they may not be very substantial
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Ablation Study: Modeling Temporal Dependencies

Standard RNNs perform poorly because they fail to consider the crucial time
interval information

Is using time encoding techniques the only solution for modeling temporal
dependencies? The answer is no

Our approach produces dominant results by significantly outperforming the
best available techniques, i.e., time encoding and exponential time decay
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Parametric Sensitivity

For each dataset, there are optimal balances between the intensities of three
sampling biases
In most cases, sampling 16 or 32 walks with a length of 2 or 3 is sufficient to
characterize a temporal node
Increasing the number of negative samples can be beneficial, but it comes at
the cost of increased model complexity
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Limitations

Calculating spatial-biased probabilities can be computationally intensive,
though limiting the number of spanned temporal neighbors can help alleviate
the burden on computation

A more sophisticated time interval normalization strategy is required.
Although we propose a simple solution based on logarithmic transformations,
there is no theoretical guarantee of stability when solving the continuous
evolution process with this normalization trick
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Summary
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Summary

We propose novel spatiotemporal-biased random walks to extract diverse and
expressive patterns from CTDGs by considering not only time constraints but
also topological and tree traversal properties

We introduce a new perspective to encode dynamic graph motifs composed
of irregularly-sampled temporal nodes, explicitly and better modeling the
underlying spatiotemporal dynamics

We integrate contrastive learning into dynamic graph modeling to enrich
supervision signals, which lifts the learning ability of our model
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