

Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning

Ming Jin¹, Yizhen Zheng¹, Yuan-Fang Li¹, Chen Gong², Chuan Zhou³ and Shirui Pan^{1*}

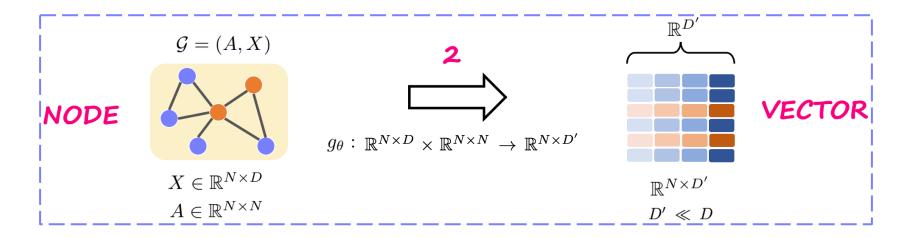
¹Department of Data Science and AI, Faculty of IT, Monash University, Australia

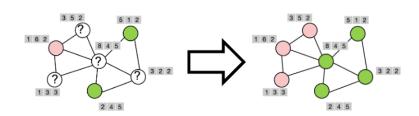
²School of Computer Science and Engineering, Nanjing University of Science and Technology, China

³Academy of Mathematics and Systems Science, Chinese Academy of Sciences, China

{ming.jin, yizhen.zheng, yuanfang.li, shirui.pan}@monash.edu, chen.gong@njust.edu.cn,
zhouchuan@amss.ac.cn

Presenter: Ming Jin





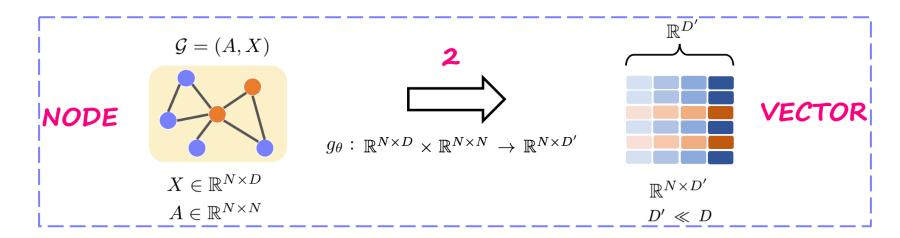
Why Graph Self-Supervised Learning

(Semi-)Supervised Graph Learning

Input: A partially labeled attributed graph

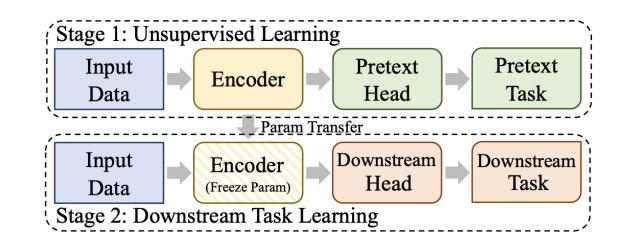
Output: Inferring the labels of unlabeled nodes

To get away from semantic categories

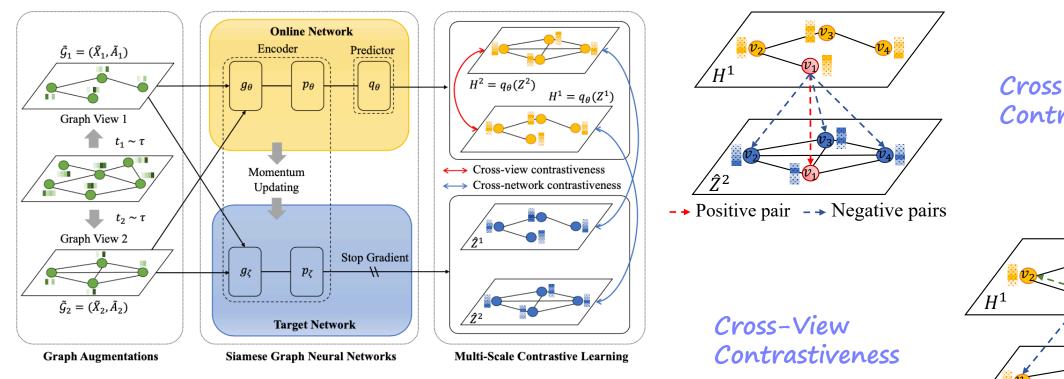

To get away from fixed datasets

To get away from fixed objectives

Why Graph Self-Supervised Learning



Graph Self-Supervised Learning


Input: An unlabeled attributed graph

Output of downstream task: Inferring the labels of unlabeled nodes



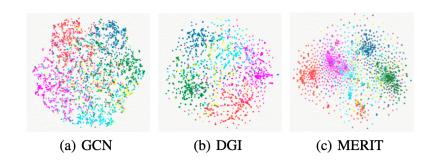
MERIT: Multi-Scale Contrastive Slamese NeTworks

A multi-scale graph contrastive schema with self-knowledge distillation is proposed to train the (online) graph encoder.

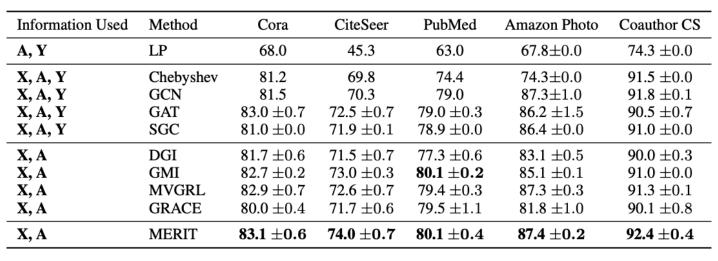
Cross-Network Contrastiveness

- → Positive pair The Negative pairs

Experiments

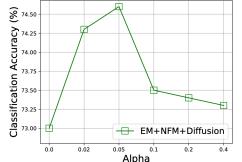


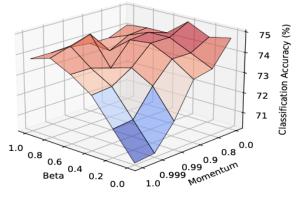
Dataset	Nodes	Edges	Features	Classes
Cora	2,708	5,429	1,433	7
CiteSeer	3,327	4,732	3,703	6
PubMed	19,717	44,338	500	3
Amazon Photo	7,650	119,081	745	8
Coauthor CS	18,333	81,894	6,805	15


Dataset statistics

Method	CiteSeer	Amazon Photo
MERIT MERIT w/o cross-network MERIT w/o cross-view	74.0 ± 0.7 73.8 ± 0.4 73.6 ± 0.4	87.4 ± 0.2 87.0 ± 0.1 87.1 ± 0.3


Ablation study on CiteSeer and Amazon Photo




t-SNE embeddings of nodes in CiteSeer

Classification accuracies on five benchmark datasets

Classification accuracies on CiteSeer versus graph augmentation in varying types and degrees

Classification accuracies on CiteSeer with different β and m

References

- Zhu, Y. (2021, July 6). *Deep Graph Contrastive Learning*. Yanqiao ZHU's Homepage. https://sxkdz.github.io/research/GraphCL/
- Tang, J. (2021). *Graph Neural Networks and Self-supervised Learning*. Jie Tang's Homepage. https://keg.cs.tsinghua.edu.cn/jietang/publications/GNN-Pre-train.pdf
- Efros, A. (2021). Self-Supervision for Learning from the Bottom Up. ICLR 2021 Invited Talks. https://iclr.cc/virtual/2021/invited-talk/3720
- Liu, Y., Pan, S., Jin, M., Zhou, C., Xia, F., & Yu, P. S. (2021). Graph self-supervised learning: A survey. arXiv preprint arXiv:2103.00111.