

MULTI-SCALE CONTRASTIVE SIAMESE NETWORKS FOR SELF-SUPERVISED GRAPH REPRESENTATION LEARNING

ABSTRACT

Prior arts on graph representation learning heavily rely on labeling information. To overcome this problem, we propose a novel self-supervised approach to learn node representations by enhancing Siamese self-distillation with multi-scale contrastive learning. Specifically, we first generate two augmented views from the input graph based on local and global perspectives. Then, we employ two objectives called cross- view and cross-network contrastiveness to maximize the agreement between node representations across different views and networks. To demonstrate the effectiveness of our approach, we perform empirical experiments on five real-world datasets.

METHODOLOGY

Cross-view contrastive learning regularizes our **Cross-network contrastiveness** aims to distill the bootstrapping objective by contrasting between knowledge from historical observations and stabilize online graph encoder training. online representations of two views.

$$\mathcal{L}_{cn} = \frac{1}{2N} \sum_{i=1}^{N} \left(\mathcal{L}_{cn}^{1}(v_i) + \mathcal{L}_{cn}^{2}(v_i) \right),$$

where we have:

$$\mathcal{L}_{cn}^{1 \text{ or } 2}(v_i) = -\log \frac{\exp(\sin(h_{v_i}^{1 \text{ or } 2}, \hat{z}_{v_i}^{2 \text{ or } 1}))}{\sum_{j=1}^{N} \exp(\sin(h_{v_i}^{1 \text{ or } 2}, \hat{z}_{v_j}^{2 \text{ or } 1}))}.$$

More importantly, a momentum parameter updating mechanism is applied to facilitate the knowledge distillation:

$$\boldsymbol{\zeta}^{t} = \boldsymbol{m} \cdot \boldsymbol{\zeta}^{t-1} + (1-\boldsymbol{m}) \cdot \boldsymbol{\theta}^{t}.$$

KEY REFERENCES

- et al. Bootstrap your own latent: A new approach to self-supervised learning. In NIPS, 2020.

where the inter-view contrasting is defined as: $\exp(\sin(h_{v_i}^{1 \text{ or } 2}, h_{v_i}^{2 \text{ or } 1}))$ $\mathcal{L}_{inter}^{1 \text{ or } 2}(v_i)$

MING JIN, YIZHEN ZHENG, YUAN-FANG LI, CHEN GONG, CHUAN ZHOU, SHIRUI PAN

MOTIVATION

-
Positive pair
Negative pairs

$$\mathcal{L}_{cv} = \frac{1}{2N} \sum_{i=1}^{N} \left(\mathcal{L}_{intra}^{1 \text{ and } 2}(v_i) + \mathcal{L}_{inter}^{1 \text{ and } 2}(v_i) \right),$$

$$\sum_{i=1}^{N} (v_i) = -\log \frac{1}{\sum_{j=1}^{N} \exp(\sin(h_{v_i}^{1 \text{ or } 2}, h_{v_j}^{2 \text{ or } 1}))}$$

The intra-view contrasting is formulated as:

$$\mathcal{L}_{intra}^{1 \text{ or } 2}(v_i) = -\log \frac{\exp(\sin(h_{v_i}^{1 \text{ or } 2}, h_{v_i}^{2 \text{ or } 1}))}{\exp(\sin(h_{v_i}^{1 \text{ or } 2}, h_{v_i}^{2 \text{ or } 1})) + \Phi},$$

where
$$\Phi = \sum_{j=1}^{N} \mathbb{1}_{i \neq j} \exp(\sin(h_{v_i}^{1 \text{ or } 2}, h_{v_j}^{1 \text{ or } 2}))$$

[1] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Pires, Zhaohan Guo, Mohammad Azar,

[2] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive Representation Learning. In ICML Workshop, 2020.

FRAMEWORK

EXPERIMENTS

Information Used	Method	Cora	CiteSeer	PubMed	Amazon Photo	Coauthor CS
A, Y	LP	68.0	45.3	63.0	67.8±0.0	74.3 ±0.0
X, A, Y X, A, Y X, A, Y X, A, Y X, A, Y	Chebyshev GCN GAT SGC	$81.2 \\ 81.5 \\ 83.0 \pm 0.7 \\ 81.0 \pm 0.0$	69.8 70.3 72.5 ±0.7 71.9 ±0.1	74.4 79.0 79.0 ± 0.3 78.9 ± 0.0	74.3 ± 0.0 87.3 ± 1.0 86.2 ± 1.5 86.4 ± 0.0	91.5 ± 0.0 91.8 ± 0.1 90.5 ± 0.7 91.0 ± 0.0
X, A X, A X, A X, A	DGI GMI MVGRL GRACE	81.7 ± 0.6 82.7 ± 0.2 82.9 ± 0.7 80.0 ± 0.4	71.5 ± 0.7 73.0 ± 0.3 72.6 ± 0.7 71.7 ± 0.6	77.3 ± 0.6 80.1 ±0.2 79.4 ±0.3 79.5 ±1.1	83.1 ± 0.5 85.1 ± 0.1 87.3 ± 0.3 81.8 ± 1.0	90.0 ± 0.3 91.0 ± 0.0 91.3 ± 0.1 90.1 ± 0.8
X, A	MERIT	$\textbf{83.1} \pm \textbf{0.6}$	$\textbf{74.0} \pm \textbf{0.7}$	$\textbf{80.1} \pm \textbf{0.4}$	$\textbf{87.4} \pm \textbf{0.2}$	$92.4\pm\!0.4$

 β and m. A warmer color denotes a higher accuracy. tion in varying types and degrees.

Classification accuracies on CiteSeer with different Classification accuracies on CiteSeer versus graph augmenta-

- Two graph views are first generated via augmentations. Then, online and target networks are employed to generate node representations for each view.
- A multi-scale contrastive schema with the self-knowledge distillation is proposed to train the online graph encoder.
- g_{θ} and g_{ζ} are two graph encoders. p_{θ} , p_{ζ} and q_{θ} are two-layer MLPs with the batch normalization.

GitHub Site