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METHODOLOGY EXPERIMENTS
Information Used  Method Cora CiteSeer PubMed  Amazon Photo  Coauthor CS
A Y LP 68.0 45.3 63.0 67.8+0.0 74.3 +0.0
X,A Y Chebyshev 81.2 69.8 74.4 74.340.0 91.5 £0.0
X,A,Y GCN 81.5 70.3 79.0 87.341.0 91.8 +0.1
X,A,Y GAT 83.0 £0.7 725 £0.7 79.0%0.3 86.2 +1.5 90.5 0.7
X,A,Y SGC 81.0 0.0 719 +0.1 78.9+0.0 86.4 +0.0 91.0 £0.0
Positi . Neoat . Posit > Negat . X, A DGI 81.7x0.6 71.5x0.7 77.3x0.6 83.1 0.5 90.0 0.3
T POSTVE DAL m o ECALVE Pails - rosivepair ., Negallve pairs X, A GMI 82.7+0.2 73.0+0.3 80.1+0.2  85.1+0.1 91.0 £0.0
Cross-network contrastiveness aims to distill the = Cross-view contrastive learning regularizes our §’i MVGRL 829 £0.7 726 £0.7- 79.4 £0.3 87.3 £0.3 91.3 0.1
. . . : . . , GRACE 80.04+0.4 71.74+0.6 79.5+1.1 81.8 £1.0 90.1 £0.8
knowledge from historical observations and sta-  bootstrapping objective by contrasting between
bilize online graph encoder training. online representations of two views. X, A MERIT 831+0.6 74.0x0.7 380.1x0.4 87.4 +0.2 2.4 +0.4
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where we have:
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